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I

COMPUTING THE GRAZING ANGLE OF SPECULAR REFLECTION

INTRODUCTION

In this report we give three methods, for computing the grazing angle of specular reflection. The
first was developed by Fishback 11,21 in 1943 and refined somewhat by Blake [31 in 1980, and ) gives
an approximation to the grazirg angle. The second is an iterative method, whose derivation is easy and
provides for the computation of the grazing angle to any degree of accuracy specified. The third
method shows that there is a closed form explicit expression for the grazing angle. This in turn also
allows for a computation to an arbitrary degree of accuracy. A FORTRAN program of the second
method is included in Appendix B.

GENERAL REMARKS

The geometry of the spherical-earth problem and definitions of various angles and distances are
given in Fig. 1.

The problem of computing the grazing angle of specular reflection is that of computing * in Fig.
1, i.e., finding...an angle between the tangent line, I, to the circle and AR where 41 is also the angle
between land TR.
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Fig. I - Geometry of spherical-earth specular reflection

Manuscript submitted May 20, 1982.



MILLER AND VEGH

We assume that 46 - ('0 + 02); hl, h2, and re are given. Define k, - r, 2.
re+ h,

METHOD ONE

In method one. let

s - rO. (1)

- 2 ±rE(hl + h2) + , (2)

and

q - sin-'12p-3 r s(h 2 - hi)1. (3)

Then when h, and h2 are very much less than r1, Fishback approximates 0 by

= s- (-i

Finally, the grazing angle € is given by

- tan-'(cot 01 - k, csc 0,). (5)

The error in the approximation for 01 (and consequently for qi) is not generally known. How-
ever, if h, = h2, then 01 - 1/20 and Eq. (5) provides the exact result for the grazing angle.

METHOD TWO

Method two uses an iterative procedure for computing the grazing angle to any degree of accu-
racy.

First, applying the law of sines to triangles OAR and ORT, we obtain

01 + 0 - cos- ' (k, cos 0) (6)

and

02 + 4' - cos- ' (k2 cos ). (7)

Adding the equations (and recalling that 0 - 01 + 02) we have,

0, - g(o) (8)
where.

g(O) - -llcos-'(k, cos qs) + cos-1 (k2 cos * ) - oJ]. (9)

If we choose .to arbitrarily and define

+ - ,) i-0, 1, 2,.. (10)

then by the results of Appendix A,

lim 0j (11)

exists and is the unique solution of Eq. (8), i.e., (11) is the grazing angle.
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Approximations to the grazing angle are given by the terms of the sequence 410, 41, .. with SUL-
cessive terms providing more accurate approximations. In practice, when the relative difference of suc-

cessive terms of this sequence differ in absolute value by no more than a predetermined constant, we I

obtain the grazing angle to our required degree of accuracy. A FORTRAN program implementing
method two is given in Appendix B.

To obtain a rapid convergence for method two, we might use method one to obtain the initial
value, qo. In addition, method two may be useful in real-time computation of the grazing angle, since
an angle once computed may be used as the initial value for an update computation.

METHOD THREE

The third method produces, in principle, an explicit expression for the grazing angle.

Let U - exp(GO) and Z - exp(2iqj).

Then replacing U and Z in Eq. (8), we obtain the following quartic (see Appendix C for deriva-
tion):

,Z 4 + pZ1 + CZ 2 + Z + a -0, (12)

where,

A - U- kk 2,

a - UA,
- k' + k2 - 2klk 2 U,

and

C - 2ReIp - UA .

Since Eq. (12) is a quartic, the roots can be exhibited explicitly using the classical method of Fer-
rari and Cardan [41. At least one of these roots lies on the unit circle. Let Z. designate any of those
roots on the unit circle. Then

I cos- ' (Re (Z.)), (13)

and that unique value of 4F. that satisfies Eq. (8) is the grazing angle.

Rather than use the method of Ferrari and Cardan to find the four roots of Eq. (12), it is easier
and more efficient to solve the quartic numerically on a computer using a polynomial root finder rou-
tine.

CONCLUSION

Three methods for computing the grazing angle of specular reflection are given. The first pro-
vides an approximation where the error is not known. Methods two and three will provide computa-
tions good to any degree of accuracy. Method two, an iterative procedure, may be especially useful in
real time computation.
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Appendix A

PROOF OF CONVERGENCE TO THE GRAZING ANGLE

Let X be an arbitrary set, d a metric on X, and f a contraction mapping of X to itself. (f is called
a contraction mapping if there is a positive constant k < I such that

d(f(x), f(y)) < k d(xoy) for all x, y in X).

The following result may be found in [All.

THEOREM: Every contraction m.apping, f, on a complete metric space has a unique fixed point,

i.e., there is a unique x in X such that f(x) - x. Furthermore, for an arbitrary x0 in X, the sequence
given by x 3, - f(x.), n - 0, 1, 2 ... converges to ic

As a special case, let Xbe the reals and for xjyin Xlet d(xy) - Ix - y1. Then (Xd) is a com-
plete metric space.

Now let f be a differentiable function defined on X and suppose furthermore that there is a con-

stant k, 0 < k < I such that If(x)I 1 kfor all xin . Then f is a contraction mapping. This may be
seen as follows. Let x and y be real numbers, x < y. By the mean value theorem there is a number C,
x <ysuch that

f(s) - f(y) - (x - Y)fJ(V.

Hence,

f(x) - f(y)I - Ix - yllf'(C)l < k Ix - yl.

These results may be summarized in the following.

COROLLARY: Let R be the reals, k a constant 0 < k < 1, and f a differentiable function on R

such that Vr(x) 1 4 k for all x in R. Then there is a unique real number a such that

a - f(a).

Moreover, if xo is an arbitrary real number and x.+t - (x.), n - 0, 1, 2, ... then

lim x. - a.

With respect to Method 2, we have given the differentiable function

g(x) - 4 Jcos-'(k cos x) + cos-'(k 2 cos x) -
Differentiating, we have

k, sin x k 2 sin x
Il -k cos x + Il-k'cosx

- =COS2 X km Ics "'
S* k-kcos

2 x "-kcos2 x
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Recalling that

ki- re < 1 1
r, + hi

we have

12g'(x) C 1  J 77
Sk, + k2 < 2,

or

g'xi<k, + k2
g,(X) 2 <

Hence, by the Corollary, there is a unique number a such that

a - g(a).

Moreover, if x0 is arbitrary and xM+I - g(x,,), n - 0, 1, 2, ... , then

lim x,, - a.

REFERENCE

Al. G. Bachman and L. Narici, Functional Analysis, Academic Press, N.Y., 1966.
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Appendix 8

A FORTRAN PROGRAM OF METHOD TWO

S'4'J9CF LISTING ASE FAST FO RTRAN CflMP[LER RELEASE FTFwt0c?9.P29.#RC

%dATIf-ENT CP OPTIONS v (490E DATE 0 5106/82fR?.126)

vi~R~ourNE GQAJ'Eff4t1,?.THEFTA*REWHI)
r
r. THIS 9qWUTI4F C01MPUTES THE 6RAZING ANGLE 94[ FO S904FQCAL
C FAQT4 SPECULAR RFFLECTT(IN.
C
C Wl1 ANTENNA HEIGHT.
C 142= TARGET HEIGHT.
C OEv FAQT0 EFFECTiVF RADIUS1 OR EART14 RADT11S.
C T4ET4 TS CENTRAL ANGLE IN RADIANS.

C 041 'OUST BE INITIALFIF0 [N CALLING ROUTINE! Ohl .4F. 0.
c 0t4T= GRAI1N6 ANGLE 0W1FOUT [N 4a0tANS.
C RELATIVE ERROR IN 9141 TS 10.'-At R1JT CAN OF IJECREASFn MY CHANGING
r VALUE flF TflL IN DATA STATEMENT.
c

c TNOIJTS AND E!ITPUTS ARE IN 0EAL*8*REAL*i, CAN RE USEn MY RFMnVtmr,
c IMOLICIT STATEMENT AND AD)JUSTING TRL.
f
c 41. HZ2, RE. TH4ETA ARE INPUTS. UJNITS FO "1. 1429 RE MUST RE
C Cr9NSISTENTO

C
INDLICIT RFAL*6(A-H,pM-1)

C
DATA TMLI1.0-0/

9K2=9E/C Z* RE)

I( A .GE. 0.00 .ANDo A .LE. 1,0-15 GOVY 11
C

20 G=3.';n0eDARCOS(Rgl~flC0S(PHI1) ),DARCOS(R%2*0CfvS(PHT))-THETA)

IP-(RTSTaLE* TOL )GOTO 10

GOT@ 20

10 oHlIG
C

QETUVN

It Pofyo.fDO
'ETURN
ENn
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Appendix C

DERIVATION OF THE QUARTIC

Beginning with Eq. (8), we have

cos (2qi+ 0)- k Ik2 COS 2 4,- - k csI' C q, k? 2 q

Squaring, we obtain

(-k COS 2 *)(I k/ 2s 2 q1) = Ik~k2 COS2 qi cos(2$i + 4)]2,

or

1 2 (?+k)COS2  COS -os(20~ + 0t) - 2 k Ik2 COS2 qj, cos(20$ + 0). (C 1)

Let U =exp 00~) and Z - exp 0i2t#),

so that

COS 2  -- + 2+ 2),4

and

CS(20 + 0) - -IUZ + UZJ1. (03)
2

Multiplying both sides of Eq. (0I) by 4 U2Z2 and substituting Eq. (C2) and Eq. (03) into Eq.
(CI) we have

4U2 2 U2 k + kj)(Z + 2Z1 +Z)
_ (U'Z4 + 2 U2Z2 + 1) - Ukjk 2 (Z

2 + 2Z + 1)(U 2Z2 + 1).

Then grouping the terms in powers of Z gives

UIAZ 4 + U~f3Z3 + U2(2Re (8 - UAi)) Z' + U'PZ + (iA - 0.

Now dividing by UI2 gives Eq. (12).


